Cilia beating patterns are not hydrodynamically optimal

نویسندگان

  • Hanliang Guo
  • Janna Nawroth
  • Yang Ding
  • Eva Kanso
چکیده

We examine the hydrodynamic performance of two cilia beating patterns reconstructed from experimental data. In their respective natural systems, the two beating patterns correspond to: (A) pumping-specialized cilia, and (B) swimming-specialized cilia. We compare the performance of these two cilia beating patterns as a function of the metachronal coordination in the context of two model systems: the swimming of a ciliated cylinder and the fluid pumping by a ciliated carpet. Three performance measures are used for this comparison: (i) average swimming speed/pumping flow rate; (ii) maximum internal moments generated by the cilia; and (iii) swim-ming/pumping efficiencies. We found that, in both models, pattern (B) outperforms pattern (A) in almost all three measures, including hydrodynamic efficiency. These results challenge the notion that hydrodynamic efficiency dictates the cilia beating kinematics, and suggest that other biological functions and constraints play a role in explaining the wide variety of cilia beating patterns observed in biological systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization, phase locking, and metachronal wave formation in ciliary chains.

Synchronization and wave formation in one-dimensional ciliary arrays are studied analytically and numerically. We develop a simple model for ciliary motion that is complex enough to describe well the behavior of beating cilia but simple enough to study collective effects analytically. Beating cilia are described as phase oscillators moving on circular trajectories with a variable radius. This r...

متن کامل

Driving potential and noise level determine the synchronization state of hydrodynamically coupled oscillators.

Motile cilia are highly conserved structures in the evolution of organisms, generating the transport of fluid by periodic beating, through remarkably organized behavior in space and time. It is not known how these spatiotemporal patterns emerge and what sets their properties. Individual cilia are nonequilibrium systems with many degrees of freedom. However, their description can be represented ...

متن کامل

Finding the ciliary beating pattern with optimal efficiency.

We introduce a measure for energetic efficiency of biological cilia acting individually or collectively and numerically determine the optimal beating patterns according to this criterion. Maximizing the efficiency of a single cilium leads to curly, often symmetric, and somewhat counterintuitive patterns. However, when looking at a densely ciliated surface, the optimal patterns become remarkably...

متن کامل

Cilia-like beating of active microtubule bundles.

The mechanism that drives the regular beating of individual cilia and flagella, as well as dense ciliary fields, remains unclear. We describe a minimal model system, composed of microtubules and molecular motors, which self-assemble into active bundles exhibiting beating patterns reminiscent of those found in eukaryotic cilia and flagella. These observations suggest that hundreds of molecular m...

متن کامل

Evaluating efficiency and robustness in cilia design.

Motile cilia are used by many eukaryotic cells to transport flow. Cilia-driven flows are important to many physiological functions, yet a deep understanding of the interplay between the mechanical structure of cilia and their physiological functions in healthy and diseased conditions remains elusive. To develop such an understanding, one needs a quantitative framework to assess cilia performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014